COMP 1 10/L Lecture 6

Maryam Jalali

Slides adapted from Dr. Kyle Dewey

Qutline

® Methods
® Variable scope
® Call-by-value

® Testing with JUnit

Variable Scope

Question

Does this compile!?

public class Test {
public static void

maln (String[] args)
int x = 7;
1int

X = 8
X 1

X = +

°
’

Question

Does this compile!?

public class Test {
public static void

malin (S
in

1n:

} Same name

ct

cring |]
X !
X oF

args)

{

Question

Does this compile!?
public class Test {
public static void
maln (String[] args)
int (x| = 7;
int X = 8;

(1 (1

} Same name

Does not compile!

error: variliable x 1s already defined 1in
method main

Methods and Variables

® Method parameters introduce new variables

® Method bodies may introduce new variables

Methods and Variables

® Method parameters introduce new variables

® Method bodies may introduce new variables

public static int foo(int x) {
int y = x + 1;

return vy,

Methods and Variables

® Method parameters introduce new variables

® Method bodies may introduce new variables

public static int foo(int x) {
int v = x + 1;
return v;

J

public static void

main (String[] args) {
int y = 8;
System.out.println(y);

}

Methods and Variables

® Method parameters introduce new variables

® Method bodies may introduce new variables

public static int foo(int x) {
int |y|= x + 1;
return v;

} Same name - does this compile?

public static void

main (String[] args) {
int |y| = 8;
System.out.println(y);

}

Methods and Variables

® Method parameters introduce new variables

® Method bodies may introduce new variables

public static int foo(int x) {
int |y|= x + 1;
return v;

} Same name - does this compile?

public static void Yup!
maln (String[] args)
int |y| = §;

System.out.println(y);
}

Why!

Declared variables have a scope

The scope of a variable is the section of code
in which a variable is valid or “known.”

Declaring two variables with the same name in
the same scope:error

Declaring two variables with the same name in
different scopes:OK

Scopes are introduced with { }

public class Test {
public static void
main (String[] args) {
int x = 7;
int x = §8;

public class Test {
public static void
main (String[] args)
int x = 7;
int x = §8;

public class Test {
public static void

maln (String[] args)
int x = 7;
int x = 8;

Scope of main

public class Test {
public static void
maln (String|]

Same variable

name in same
scope:error

J

int
int

X

X

:7;
= 3;

args)

{

Scope of main

public static int foo(int x) |
int vy = x + 1;
return v,

J

public static void

main (String[] args) {
int vy = 8;
System.out.println(y);

public static int foo(int x)
int v = x + 1;
return vy;

public static void

maln (String[] args) |{
int vy = 8;
System.out.println(y);

public static int foo(int x)
int v = x + 1;
return v;

J

{

Scope of foo

public static void

main (String[] args) {
int v = 8;
System.out.println(y);

}

Scope of main

public static int foo(int x)

int [yl=x + 1;
return v;

{

Scope of foo

Same variable name in different scopes:ok

public static void

maln (String[] args)
int [yl = 8;
System.out.println (foo

J

Scope of main

Call-by-Value

Question

What does this code print?

public static int something(int x) {
X = 1;
return Xx;

J

public static void

main (String[] args) {
int x = 8;
something (x) ;
System.out.println(x) ;

J

Question

What does this code print?
Answer:8

public static voild something (int x) {
X = 1;

J

public static void

maln (String[] args)
int x = 8;
something (xX) ;
System.out.println(x) ;

J

Why?
® Java uses call-by-value

® Semantics:when a call is made, the method
called works with a copy of passed data

Call By Value public void meth (int num)

int a =34;
meth(a)

Why!

® Java uses call-by-value

® Semantics:when a call is made, the method
called works with a copy of passed data

public static voild something (int x) {
X = 1;

J

public static void

main (String[] args) {
int x = 8;
something (xX) ;
System.out.println(x) ;

J

Why?
® Java uses call-by-value

® Semantics:when a call is made, the method
called works with a copy of passed data

public static voild something(int x) {
X = 1;

something gets a copy of x

J

public static void any changes something
maln (String[] args) { makes will

int x = §; only change the copy
something (x) ;
System.out.println(x) ;

Testing with JUnit

Testing Motivation

® Builds confidence that code works as intended

® Ensures that code doesn’t break if
downstream changes are made

JUnit Motivation

® Wildly popular for writing tests for Java

® Can do alot

Example:
'rianglePerimeter. java

_ bh

Area A 5

PerimeterP = a4+ b+

b —— base

: h
h —— height

a —» side Triangle

C — side

Key Point |: Filename

Tests must be held in MyClassTest. java,
where the code is held in MyClass. java

Key Point |: Filename

Tests must be held in MyClassTest.java,
where the code is held in MyClass. java

TrianglePerimeter. java

Key Point |: Filename

Tests must be held in MyClassTest.java,
where the code is held in MyClass. java

TrianglePerimeter. java

TrianglePerimeterTest.java

Key Point |: Filename

Tests must be held in MyClassTest.java,
where the code is held in MyClass. java

TrianglePerimeter. java

TrianglePerimeterTest.java

MultiplySeven. java

Key Point |: Filename

Tests must be held in MyClassTest.java,
where the code is held in MyClass. java

TrianglePerimeter. java

TrianglePerimeterTest.java

MultiplySeven. java
MultiplySevenTest.java

Key Point 2: imports

File containing tests must begin with:

import static org.junit.Assert.assertEquals;
import org.junit.Test;

Key Point 3: Method Setup

Each test is a method of the form:

@Test

public void testName () {

}

Key Point 3: Method Setup

Each test is a method of the form:

@Test

public void testName () {

}

Note:nostatic

Key Point 4:
assertkEquals

® Test method bodies must contain
assertEqguals, which fails the test ifthe

two passed values are not equal

® Tests without assertEquals test nothing!

Key Point 4:
assertkEquals

® Test method bodies must contain
assertEqguals, which fails the test ifthe

two passed values are not equal

® Tests without assertEquals test nothing!

dTest public void myTest () {
assertEquals (1, 2);

Key Point 5:
ClassName.methodName

To call a method foo defined in Foo.java from
FooTest.java,you must say Foo. foo ()

Key Point 5:
ClassName.methodName

To call a method foo defined in Foo.java from
FooTest.java,you must say Foo. foo ()

dTest public void myOtherTest ()
assertkEquals (2, Foo.foo(7));

J

